引用本文: | 崔德智,周游*,李佳男,陈旭,韩丽男.西洋参-石菖蒲介导Nrf2-Keap1信号通路改善小鼠糖尿病脑病的机制研究[J].中国现代应用药学,2024,41(9):1173-1182. |
| CUI Dezhi,ZHOU You*,LI Jianan,CHEN Xu,HAN Linan.Study on the Mechanism of Panax Quinquefolium-Acorus Calamus Ameliorating Diabetic EncepHalopathy in Mice by Mediating Nrf2-Keap1 Signaling Pathway[J].Chin J Mod Appl Pharm(中国现代应用药学),2024,41(9):1173-1182. |
|
摘要: |
目的 观察西洋参-石菖蒲对糖尿病(diabetes mellitus,DM)小鼠学习记忆能力的影响,并通过网络药理学及动物实验探究西洋参-石菖蒲治疗糖尿病认知障碍(diabetic cognitive impairment,DCI)的机制。方法 腹腔注射链脲佐菌素(80 mg·kg-1)复制DM小鼠模型,灌胃给药8周并通过Morris水迷宫观察药效。利用TCMSP、Swiss Target Prediction、Gene cards搜集西洋参-石菖蒲的活性成分及靶点;使用String数据平台以及Cytoscape构建蛋白互作网络并对“中药-成分-疾病靶点”进行可视化,利用Metascape数据库对预测基因进行富集分析;通过ELISA法、Western blotting检测西洋参-石菖蒲抗DCI的机制;使用HE染色观察DM小鼠海马神经元的变化。结果 西洋参-石菖蒲可以缩短DM小鼠逃避潜伏期(P<0.05),对游泳速度影响无显著性差别。网络药理学结果提示西洋参-石菖蒲治疗DCI的主要成分为人参皂苷Re、人参皂苷Rh2、山柰酚等,通过调节Nrf2-Keap1信号通路来治疗DCI。动物实验表明西洋参-石菖蒲可提升DM小鼠SOD活力(P<0.05),降低MDA水平(P<0.01)、提升HO-1、Keap1、Nrf2在小鼠脑内的表达(P<0.01),减轻小鼠海马CA1、CA3及DG区颗粒细胞排列松散程度及细胞核固缩现象。结论 网络药理学和动物实验相结合,初步揭示了西洋参-石菖蒲防治DCI的潜在靶点和作用机制;通过分子对接推测了西洋参-石菖蒲防治DCI的物质基础。这为西洋参-石菖蒲的更深入研究提供了方向和思路。 |
关键词: 网络药理学 西洋参-石菖蒲 Nrf2-Keap1信号通路 |
DOI:10.13748/j.cnki.issn1007-7693.20231370 |
分类号: |
基金项目:哈尔滨商业大学校级科研资助项目(17XN032) |
|
Study on the Mechanism of Panax Quinquefolium-Acorus Calamus Ameliorating Diabetic EncepHalopathy in Mice by Mediating Nrf2-Keap1 Signaling Pathway |
CUI Dezhi, ZHOU You*, LI Jianan, CHEN Xu, HAN Linan
|
College of Pharmacy, Harbin University of Commerce, Harbin 150000, China
|
Abstract: |
OBJECTIVE To observe the effects of Panax quinquefolium-Acorus calamus on learning and memory abilities in diabetes mellitus(DM) mice and investigate the mechanism of Panax quinquefolium-Acorus calamus in treating diabetic cognitive impairment(DCI) through network pharmacology and animal experiments. METHODS Diabetic mouse model was established by intraperitoneal injection of streptozotocin(80 mg·kg-1), followed by 8 weeks of oral administration and assessment of drug efficacy using the Morris water maze. The active ingredients and targets of Panax quinquefolium-Acorus calamus were collected using TCMSP, Swiss Target Prediction, and Gene Cards. The protein-protein interaction network of "Traditional Chinese Medicine-Ingredient-Disease targets" was constructed using the String platform and Cytoscape, visualized, and subjected to enrichment analysis using the Metascape database. The anti-DCI mechanism of Panax quinquefolium-Acorus calamus was examined through ELISA and Western blotting, while changes in hippocampal neurons of diabetic mice were observed using HE staining. RESULTS Panax quinquefolium-Acorus calamus reduced the escape latency of diabetic mice(P<0.05), without significant impact on swimming speed. Network pharmacology results indicated that the main components of Panax quinquefolium-Acorus calamus in treating DCI were ginsenoside Re, ginsenoside Rh2, and shanjin phenol, which regulated the Nrf2-Keap1 signaling pathway to treat DCI. Animal experiments demonstrated that Panax quinquefolium-Acorus calamus increased SOD activity(P<0.05), decreased MDA levels(P<0.01), enhanced the expression of HO-1, Keap1, Nrf2 in mouse brain(P<0.01), and alleviated the loosening of granule cell arrangement and nuclear condensation in the hippocampal CA1, CA3, and DG regions. CONCLUSION Using animal experiments combined with network pharmacology, this study preliminarily elucidates the potential targets and mechanisms of Panax quinquefolium-Acorus calamus in intervening DCI, and predictes the molecular basis for its intervention in DCI through molecular docking, providing insights for further in-depth research on Panax quinquefolium-Acorus calamus. |
Key words: network pharmacology Panax quinquefolium-Acorus calamus Nrf2-Keap1 signaling pathway |